P g %4 /{J—&

$ECTION CopPY

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

No, 1252

INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL
FLOW PAST AN ARBITRARY CASCADE OF AIRFOILS
By S. Katzoff, Robert S. Finn, and James C, Laurence

Langley Memorial Aeronautical Laboratory =~
Langley Field, Va.

R

Washington
May 1947




NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHANICAT. NOTE NO. 1252

INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL
FLOW PAST AN ARBITRARY CASCADE OF AIRFOILS

By S. Katzoff, Robert S. Finn, and James C. Laurence
SUMMARY

A procedure ‘1s presented for obitaining the pressure distri-
bution in a two-dimensional, incompressible, and nonviscous flow
on an arbitrary alrfoll section in cascade. The method considers
directly the influence ¢tn a given aixrfoll of the rest of the
cascade and evaluates thls interfersnce by an iterative process,
which appeared to converge rapidly in the cases tried (about unit
solidity, stagger angles of 0° and 45°). Two variations of ths
basic interference calculations are dsscribed. One, which is
accurate enough for most purposes, involves the substitution of
sources, sinke, and vortices for the interfering airfolls; the
other, which may be desirable for the final epproximation,
involves a contour integration. The cowmputations are simpllfied
by the use of a chart presented by Betz in a related paper. The
numerical labor invelved, while considerable, ls less than that
required by the present methods of conformal transformation.
Illustrative examples are included.

INTRODUCTION

The rapid increaess of interest In the deslign of fens end
turbines has led to many studies of the two-dimensional flow past
infinite lattices. Most of these studiss Involve approximate
procedures (for exsmple, references 1 to 3) or present solutions
for special classes of shapes (references I and 5). Recently, .
attempts have been made to obtain exact solutions by conformal
transformation of the lattice to & circle. To this end, Howell
(reference 6) used a procedure that First transformed the lattice
to an isolated S-shape figure, which could then be transformed to
a near circle by successive Joukowskl transformatlons and finally
to a circle by the method of reference 7. In reference 8 the
cascade wes transformed flrst to a near circle and then to a circls,
also with the use of several stages of conformel mepping. In
reference 9 the lattice was mapped into a lattice of straight
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parallel lines by meens of a functlion that was determined with the
aid of the transformation of this line lattice to a circle. (See
references 10 and 11.) These transformations are of conslderable
interest, theoretically. The methods of references 6 and 8 require
lengthy computations, however, and difflculty hasm been experlenced
in obtaining accurate mmericel results with the method of
reference 9. All three methods require modifications for highly
cambered contours or for lattices of high stagger and solidity.

The method presented herein does not seek & conformal
transformation directly bub, like the older spproximate methods,

- Begks to evaluate the interference at each alrfoll due to the
presence of all the other alrfolls of the cascade. Tho velocity
distribution on each airfoil is consldered to be the sum of thatb
corresponding to its presence in the vniform free-stream flow plus
that corresponding to ite presence in the interference flow. The
Interfersnce 1s calculated from the velocity distribution on the
alrfoils so that the method reduces to an iteration process in which,
for the first approximation, the interference is computed by assuming

. the .fres-stream veloclty distribution to exist on each airfoil, and
in subsequent approximations thls velocity is corrected according to
the interference derived in the preceding approximation. A solutlon
ig thus found for an erbitrarily specified angle of attack, and this
solution is ussd to find the conformal transformatilon to the circle
end thence the solutlon for eny other angle of attack.

The present method has been found sppreclably less laborious
than the methods thet seek the conformal transformation directly
and is also considered more flexible In that it may be adapted to
a variety of cascade problems that would be diffilcult to solve by
formal transformation methods; for example, the problem of the flow
abogt doublﬁ cascades (or superimposed lattices) or certain types
of "inverse problems involving the determination of the setting or
solldity for a given alrfoll in cascade. Some of the featureas of the
Interference .and iteration methods used should also be useful in the
solution of flows involving a finite number of interfering bodles.

SYIMBOLS

W Plow function (complex potentisl)

o

velocity potential

ﬁ' stream function
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veloclty at infinihy

circulation

mapping-function paremeter

local velocity

vortex atrength

gource strength

complex varieble of physicel plane (x + iy)
fixed polnt In physical plans

camplex variable of reference plane (& + in)
profile chord '

profile chord used in transformation of refersnce T

cascade spacing (dietance between'corresponding points on
adjacent blades; see fig. 1)

central engle of perfect clrcle cbtainsd in transformation
of reference 7

central angle of unit circle of figure 1
surface length on profile

blade angle (angle botween stagger line snd normsl to
chords; see fig. 1)

golidity (ratio of chord to distance betwsen profiles)
angle beotween flow dirsction and normal to stagger line
angle of attack relstive to blads chard

angle of zero 1ift for cascade, relative to blads chord

static pressure rise

turning engle of flow
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o) denslty of fliuid

an,bn Fourier serles coefficlents

Subscripts:

iy fres stream

da disturbance . :
¢ compensating

T due to circulation change

a additionsl

T total

t tail gtegnation peint

n nose stagnation'point

T.B, trailing edge

B due to source rows

v dvue to vortex rows

z physical plane —
¢ reference plane

¢ mean flow

1 incoming flow

2 outgoing flow

Ao at flow directilon XO

Aot at flow direction My'

THEORY OF INTERFERENCE CALCULATTIONS

In order to explain better the basic concepis and proceduvres of
the Interference calculations, discussion of the iterstion steps will
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be postponed for the present, and the interference calculatlons will
be described as if they were being used to verify a known solution.

Breakdown of the flow function into four cmongn%s.- Attention
is fixed on one airfoil of the infinite cascade which will be

designated the central airfoll. The flow functlon on the boundary
of this airfoll 1s considered to be the sum of the following components:

We the flow function for the central alrfoil, considered as isolated
in the free-stream flow (the vector average of the flow far
in front of the cascade and the flow fer behind the cascads).
Inssmuch as the boundary is a btreesmline in this flow,
We = Q¢

Wa the disturbance along the contour caused by the presence of
all the other alrfolls of the cascade, designated the

external airfolls (Wd. =04 + iwad_)

W the compensating flow function (which may have singularities
only within the central airfoil) that is required to
maintain the airfoll & stresmline in the presence of the
disturbance flow. It is determined by the condition that,
on the boundary, lts stream functlon must be equal and
opposite to the disturbance streem fimction. Thus,

We = & + 1Y,  where ¥, = -V3-.

Wp the contribution of the cirgu.',l.ation' that must be added to
maintain the. traillng-edge condition; 1t has only a real
component ‘(WI' = <D1-.).

The sum Wy + Wy + Wp represénts the met change of flow

function due to the presence of the external airfolls; it will be
deslgnated the additionel flow function Wg = 8- The sum Wg + Wy

will be designated the totel flow function Wy = Ope

The evaluation of the igolated, or free-stream, flow ¢p is

readlly performed by the method of reference 7 and regquires no
further discussion in the present paper. The disturbance flow can
be calculated when the potential distribution (or velocity
distribution) on the extermal airfoils is known. Finally, the
compensating flow and the circulatlon flow are readily determined,
as will be shown, when the disturbance flow is known. In the
followlng sections two methods of calculating the disturbance flow
will be described: +the approximate source-vortex method and the
exact contour-integral method.
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Disturbance flow by aspproximste source-vortex method.- Fach
of the external airfoils is considered %o be,adeguately represented

by an grrangement of &dbout two sources, three sinks (or negative
gources), end five: vortices aiatributed along its mean line. The
strongths and locations of these singularities-are;.chosen on the
‘basis of the: cherdwise. thickness dlstributioi Bnd chordwise '
velocity distribution. " The choice is somew\hat arbitrary and mey
be left to.the. Judgemen'{‘. of the worker; howgver, & detailed method
of choice has been dgkcribed in the section entitled "Computat:lona.l
Methods." The disturbance flow, then, is.ihat.of gbout ten
infinite rows of . eingularities, equally spaccd. along the casgcade
direction except that none are located where the central airfoil is
to be placed. The fiéXd of each vortex vow is shown in figure 2
vhere, for. converlence, “the vortices are assumed fo:be:iof mih
strength, spaced at unit distance along the y-axis. This figure is
from raference 1 and the equation for the flow is (raference 2)

e .- RSV I
DRI - - TR

B it T

SR R

W : ; Zl.o.ge sinh %z + mloge T -

In order to find the contribu'bion to t.he d,i stnrba.nce flow
caused by & row of vortieés at, say, 0.3 qhora on the externasl air-
foils, the, central airfoil;. Grawn to scale and properly. oriented
relative to. the Gascade direction, is placed. at t‘he center of
Tigure 2, with the origin at 0. 3 <hord on "the massn line, The valves
of veloc'ity potential. and stredw function Fead Rt selsched points
slong ‘the airfoil contour, ‘multiplied by the Essuméd vortex strength,
give directly the contribution of this vortex rov. %o (I)d. and Trg.-

By shifting the Uentral airfoil so ’bhat the origin is located, in
turn, at ssch of the. other essumed vortex positions along the mean
line and repeating the foregoing process, the contributions of all
the vortices in the external airfolls are obteined at the same
points. .. The sum-of thess valugs at a given point .on_the. central
airfoll represents -the ‘contribution of. the vortex singularities 1n
the lattice to -the distuirbance function Wd gt tha:l: point The

contributions of . the gources can be Tound in the’ same way except
that the lines merked ¢ are considered as -® and the lines marked
¢ are congidored. es % + Blnks are considered a8 negativa sources .

Qontog; integral method i‘or eva.luati_gg disturba.nce flow .
function, - In the proceding seotion) the ‘distirbencs . field waa

calculated a,p];roximate;y by -repreaenting ‘e&th airfoil by ‘e scmewhat
arbitrary a.rra.ngement of vorticed, sources, and sinks distributed
on the meen 1iné, An .airfoil may be represented exectly 'by a
continuous disfribution of vortices slong its contour, the linear
denslity of wh:l.ch a‘b overy point equals the velocity on the airfoil
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at that point (reference 12). The field at a point on the cemtral
airfoil due to & row of corresponding surface elements of the
external airfoils (that is, & row of vortices of strength vp ds)

may be obtained directly from figure 2. TIntegration of this
contribution along the contours of the external alrfolls provides
an exact determination of the disturbance fiseld. ~The procedure is
an obvious modification of the preceding approximate method.

Iet ¢ ard ¥ (without subscripts) denote, respectively, the
potential and stream function. of the row of unit vortices in
figure 2. In ovder to determine the disturbance potential and
stresm function at a point z' on the central airfoll, the air-
foll contour, drewn to scele and correctly oriented relative to
the cascade direction, 1s superimposed on figure 2 so that the
origin falls, in turn, at a mumber of points 2 on the contour,
and for each setting values of ¢ &and ¥ are read at the
point =z'. Then the disturbance flow function at z' is given by

7
¢d(z') =/c¢ 'V'T(Z) ds

Falz") -:-/\E vp(z) ds
c

where

vT( z) . local velocity on the, airfoil ai.; varia'bi_; point =z

8 distance along airfoil contour

e, ¥ values read at z' when origin of figure 2 is at =z

and the integration is performed selong the alrfoll contour.
Since vp(z) ds = ﬂ.QT( §] the fo.cegoing equations can be

rewritten as . LN e
®5(z") =.~/;-¢"@T(Z). '
?d(Z') _d/ ¥ me(z)

so that the disturbance potentia.‘l. and. stre&m function a.’o point z'
are readily evaluated by plotting: ¢ and :¥ -egainst & and
measuring the area under the curves.
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Determination of compensating flow and circulation flow.- As
has been indicated, the compensating flow function may have
singularities only within the central airfoil contour, and on the
contour, the stream function must be exactly squal and opposite to
the disturbance streem function. From the known transformstion
of the isoclated airfoil to the circls, which was found in the
process of determining Wp, the correspondence betwevn pointe on
the airfoil and points on the circle is known. If, then, the
dosired. compensating stream function is expanded as a Fouriler series
in terms of the circle angle @, _

w .
g[:c=z__: (ancosncp+bnsinn<p)

its corresponding veloclty potential will be (referenca T7) the
conJugate series .

[o2)

%, = n/:i (-by, cos np + a, sin o) _

The determination of ®, from ¥, is readily accomplished by thé
method of roference 13, : .

™

In order to maintain the trailing-edge condition, a vortex I‘a
must be added at the center of the clrcle of such strength that
I'y/2x equals the value of -a¥ /d(p at the trailing edge (determined

graphically from a faired plot of Qc against ©). The corre-
sponding contribution to the potential jis

T
p = -é-f‘t-.cp‘

The velocity potential &, =045 +& . + &p that constitutes

the net offect of pubting the airfoil in the cascade (tha‘c is, the
net interference effect) may now be determined by simple addition
of the three components. Presumably , Bince the calculations were
made gith the correct @, @, should be the difference betwsen &p
and :

In the final step, &, 1s differentiated with respect to
distence along the asirfoil to get the corresponding interference
effect on the velocity v, which should 'be_s the difference between
Ve and. vqp., Convenient procedures for performing these calculations
ere discussed in the section entitled "Computational Methods."

)



NACA TN No. 1252 _ 9
ITERATION METHOD

In the preceding sections the basic concepts and procedurses
of cascade interference calculations have been outlined. In the
present section, the application of such calculations In the pro-
posged iteration method of solving cascads flow will be discussed.

As Tirst attempted, the method was essentlally as follows:
In the first step, Py is assumed to equal ¥, &nd a first

approximaetion to @a is calculaied on this basis by the methods
Just described. In the second step, @T is assumed equal to the

sum of Py and this first aprroximation to 2., end a second
approximation to Qa is computed, The succeeding steps follow
the same pattern and are continued until two successive & -

distributions are essentially the same. The source~vortex method
wvas used for the earlier approximations, but the final approximation,
when convergence is practically complete, was made by the contour- -
Integral method. This procedure, however, was found to convergs
relatively slowly in some cases; and the general practlcabllity of
the interference method depends on a slight modification of the
source -vortex method.

The modiflcation depends upon the observations that the
conbribution of the sources and sinks to. (I)a. changes by relatlvely

1ittle from one approximation to the next and that the contribution
of the vortices to &, is nearly proportional to their total

gtrength and relatively independent of their distribution. Obviously,
If 1t weore exasctly true that the contribution of the sources and

sinks is constent and that the contribution of the vortices is
proportional to their total strength, only one interference calculation
would be required and the solution could then be obtained through a
simple algebralc eguation. Thus,let .

Tp total circulation on airfoil in cascade

T P total circ‘ulation.on isolated airfoil at same angle of attack .
T 5 additional circula.-tion (I‘T —PfD

T fg cbnstant contribﬁtion of sources and sinks to Ty

I‘a contribution of vortices to Pa when I‘f is assumed on all

v externsal airfoils
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Then, by the preceding essumptions,

. T
Ip - Pp + T +.'ITE“P8~V

whence

JAPSS N LA
P .t % S ()
£

- "TP
l_rf:l
Since the assumptions are not exactly true, the value of PI

so calculated is correspondingly inexact; however, it is much
closer to the true valus than if it were taken simply as
Ip + I‘as + Ty, Correspondingly, the potential

O = 0p + ®a8'+ifg¢av is much more a?curate than the sum

p+ Oy + P -

The second spproximation is similarly adjusted. Thus,
corresponding to_ the QT-distribution Just obbained, a new set of

sources, sinke, and vortices are distributed along the mean line,
and new values of Igs apd. Pav gre calculated. Adjustment -

follows, as befors, from the eguation

T
T - +T Top
T2 .f + ag +.PT' av.
1

vhere the subscripte 1 and 2 refer %o the first and second
approximations, respsctively., Solution for PTE gives

I1f + Pa. .
PT = £ o
2 i .I‘av .
T'p (2)
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and, finally, the potential is given by

o =08 "4‘@ +——PT2 o
m
1

This simple modification of the procedure is so effective
that In the cases tried, the first step gave solutions that would
be satisfactory for msny purposes and the procedure had practically
converuged at the second step. The additional complication of
keeping the source-sink and the vortex effscts separate so that

I, end Pa'v can be separately computed is relatively minor and
8

emply repald by the rapidity of convergence.

After the source-vortex method has essentislly converged, &
final epproximation by the contour-integral method is desirable,
In the cases computed, howsver, this final step was found to
introduce only minor changes In the result.

THE FLOW AT OTHER ANGLES OF ATTACK

From & known velocity distribution at a given angle of atisck,
the angle of zero 1ift and the slope of the 1ift curve, together
with the velocity distribution at any other angle of attack, may be
obtainsd., For this purpose, the lattice is conveniently considered
to be related conformally to an isolated circle by a periodic
transformation, which might be, say, of the type used 1n reference 6
8, or 9. The e@licit form of the trensformation, however, is not
need.ed for the present purpose.

The flow function in the circls () plane that corresponds
to the desired flow in the physical (z) pleme is

Vadf -1 <K 2 pe
W= - Osé Olo §+6K nolge§+eK iI‘loge:t'___:._ﬁK_
2x . AT L-eXj M TR K



12 NACA TN No. 1252

In the {-plane this flow may be interpreted as that due to the -
gsystem of sources, sinks, and vortices shoyn in figure 1. The

unlt circle €= e16 is & streamline of the flow and thse circu-
lation about any contour enclosing this circle but not enclosing

the points { =_fek is T' (positive clockwise).

In the physical (z) plane, the complex velocitles at the
points z = dnd z r - are determined by equation (3) and.
the transformat*on. Thus, :

o g » |
WY o v -?LO,«-LI‘_iB VGO-L.l.v-
dz 0°, L _

-.i. .
-
4z /o
where the angles and velocities aro defined in figure 1. The
flow far from the lattice is seen to be ‘the sage as that of en

infinite vortex row in the uniform flow —Vbe . It should be
notsd (fig. 1) that Ay =og-+ B, Ay =0y + B, and X, =a, + B.

In the followﬂng paragraphs it will be shown how to obtain from .
. the given splution in cescade the perametér K . and thé stagnation
‘points 6 - and Bt for the corresponding flow about: the. circle.

These values flx the angle of zero 1if+ and the slope of the 1ifh
curve of the airfoil in cascade; together with the known potential
distribution they determine the conformel corr68pondence betwéen
the profile and the circle ani, hence,the velocity distribution
at any angle of attack. - _ , .. _

and

-l 5. 4 RS Lo S
-V.e GO ; I:a,B ;‘VEQ ég .
0® . ed . L

Since the airfoll contour (z-plane).ié conformally related o
the wnit circle ({-plane), i1t follows that at any given angle of
attack &0, the changs of_ﬂelocity potentlal from nqse:tp{tail

stagnation polint on both uppor and lower surfaces must be the same
for the circle and for the profile in cascade. These potential
changes can readily be obtained for the single solution on the
lattice from the final Q ~-distribution, The velocity potential

on the unit circle is obtained from equetion (3). Thus,
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=1
?ﬁ__ = -2 |cos Mg log (SO K * ©08 O} 4 5 gin Mg ten 2129
c¥y 2ro cosh K - cos @ sinkh K

—
3

s I ta,n—ltan__e.. I
|

v.4 tanh K

A (1)

and the changs of potential from nose stagnation point 6. +to tail

n
stagnation »oint 6 " is
AD ;r . u
£ - _1_/\, cos Ay log, {cosh X - cos 84)(cosh K + cos 6p)
¥, 2n0 | (cosh K + cos 6:) (cosh K - cos 6y)

-1 | (sin 6, - sin 6y) slnh K

+ 2 8in A5 tan
0 -
__sinhEK + gin Gn sin Gt

_E. '[;an—l
Vod.

(tan 0, - ten 0) tanh K ’L
tenh?K + tan 6, tan 8y J (%)

This potentiael change may be obtalned for either the upper or the
lower surface. Two valuss are obtained depending on the cholce of
quadrant for the third term of equation (5). The condition of zero
veloclty at nose and tail stagnation points 1is

I -
sinecosxo-cpse’canthinho-gvodsinhK—O (6)

By use of the known values of I', AQp, and Ay, equations (5)
and (6) can.be solved simultaneocusly for 6,, 6y, and K.

Equation (6) can be considered as 'a quaedretic in sin 6 and with
an assumed valuse of K  dsbtermines corresponding velues of 6y

and 6i. Equetion (5) then dstermines A® ¢ By the proper choice
of values of K, a curve of A®, egainst K may be plotted such

thet at & point on this curve A¥¢ = ADp. The valus of K at this

"point 1s the desired value; the corresponding velues of 6, and 6



are then given by equation (6)}. A convenlent initisl choice for K is the value that
corresnonde to & lattice of stralight lines of the sams Htam;mr and of sbomt 10 percent or

el 2 bl Tl fe LWL P P £ Y SR wTalv Wi

20 percent higher solidity. Flgurs 3 is of aid in this respect The computed va.lues
of K and 6, together with equation (6), determine the angle of zero 1ift (" = 9]

with resyect to the alirfoil chord, thus, i
_1 "hﬁ'n eJ_

N =tan

ta—ﬁ - B (7}

and the slope of the 1ift curve, besed on mesn velocity, is obtained by differentiating
equation (6) with respect to- 7..0, thus,

2]
9, +
Ec_l. =.1L \/sj.n G_b sinh K
dmy o 8lnh K cosh K (8)
A carvespondence between points on the alrfoil emd points an the wnit circle may

be obtained by comparing the velues of §, computed by equation (&) with the velues

of ¥; from the known potential distribution. The points (x,y) on the profile

and 6 on the circle for which @ =% are corresponding points. The velocity on the
lattice profils for the .etream engle Ao .18

\ a
..Y.;\ = ._l_ -GT%
VO/RO rlz_-: Vo
& rd | cos Mg cosh K (e:n 6 - sin Gt) - 8in Ay sinh K(cbs 8 - cos 6y)
d'z 1 1 ' - ‘.-A-—"-ET? ‘:A—En -
b COEh~A - co8 @ - : i

-

where the term In bracksts, which represents the velocity on the. circle boundary, is

obtained by d*ffﬂ-rentiating squation (4). It follows that the velocity corresponding

to a new streem smngle 1’0 is

T

2GST "ON NI VOVN




v A I cos Ao cosh K(sin 6 - 8in 6,) - ein Ly' sinh K(cos 6 - cos By)
\\Vb - \Yb/{ | cos Ay cosh E(sin @ - sin 8,) - sin A, sinh K{cos 8 - cos 6,) 1 ®
0 "0

The follow'ng relationn, which describe the flow far away from the lattice, are of interest.
The ctream angles A, and A, 8t z = and 2z = -o are '

. A
- ain ko + NE
2 = tan 0
1 ceonB 7\.0
aad
T
L2 ma
A, = tan"™" =
2 cos g

end the engle through which the fluld is turned by thr. lattice 1s given by

The rise in static pressurse across the lettice is
A}
o (e (v

-

épvoeﬂ VQ) \V

= coseko (seczxl - B?cake)-

262T "ON NI VOVN

ot
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REMARKS ON CONTOUR MODIFICATIONS CORRESPONDING TO LOCAL

PRESSUPE CHANGES

In refersnce 1k, the modification of an airfoil contour to
obtain, sapproximately, desired emall changes in the pressure
distribution is dlscussed. The method, based on the formumlas of
reference 7, avaluates a glight modification of the conformal
transformation of the circle to the airfoll, such that the
stretching factor at every point is changed in proportion to the
desired relative change in local velocity.

d

Althcough 1n reference 14 +the airfoil was assumsd to lis in
a straight uniform field, the treestment 1s_equally applicable when
the airfoll is in a curved or dlstorted flow fleld. Accordingly,
the procedure should be applicable to alrfolls in cascadse,
provided the same modification of the axtornel sirfoils leaves
the dlsturbance flow fisld essentially unaffectsd. This condition
mey not always be satisfied: howeover, in such cases the method
could possibly be improved by a procedurs analogous to that
described 1n the section of the present paper entitled "Iteration
Mcthod." -

COMPUTATTIONAL METHODS

The basic thecry has been presented. In the following sectiors
some of .the methods used for performing the actual computations will
be discussed.

Selection of. points for evaluation of disburbance flow.- The
determination of the compensating flow by the method of rsference 13
requires that the disturbance flow be evaluated at points that, by
the conformal transformation, correspond to points equelly spaced
about the clrcle. These pointe, which are located by reference to
the conformal transformation, are preferably chosen so that one is
at the trailing edge. Experience hLas shawn that, for the
praliminary approximetions, 12 points at 30 intervals yield
acceptabls results. In the final step by tho contour-integral method,
the use of 24 points is preferable in order to improve accuracy,
egpeclally near the nose. An acceptable campromise is to evaluate
@d and ?d. directly for only the additional points that are near

the leading edge and to pick off the v&lues at the other additional
points from a faired curve.
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. Inasmuch as values for the 12-point and 24 -point methods are
not included in reference 13 thu following table is presented:

1«.— Cy B

n=6 n =12

_ 1 {0.62201 0.63298
' 3] .16667 .20118
5 1 .04lk66 .10860

Tl ==mem- . .06394

9 ----m- 03452

11 | <i-a- .01097

Evaluation of @, ard v,.- Integration of equation (36) of

/ . .
reference T along the circle boundary yields the values of the
potential Qf at points on the airfoil as follows:

5= 2ee ° L? sin{g + 8) - cos(a +.@)) - . - (10)
0 .

- vhere

a angle of attack

B angle of attack for Zero 1ift

R . oo L

aa.e“‘ro radius of the cilrcle to which the airfoil transforms

o P angular position along the circle, as determined by the

transformation

If the transformation hes beon performed as recommended in
reference 7, the caonstant (&) will be slightly less than one fourth
the chord. Although the potential discontinuity (corresponding to
the circulation) may, without loss of generality, be placed at any
roint on the contour, the trailing edge will generally be found to
be the most convenient location

S et
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The additional velocity Va is gjven by ‘the deriVauive along

the'surfaée'ﬂ%gh; it may be determined by graph*cally differen-
tiating @& with respect to the circle angle ¢ and multiplying

this slove by %2- Thusg,
8.

vy 42 ) 4@, do

VO ‘VOG.S VQG.CP dsg - (ll)

The value of gﬁ- mey be obtained frqm equatlons (37) and (38) of
reference 7. Thus, -

. x)

%/rl ¥ gg M][?inh + sin%6 _] | ': ':=. _ (12)

de
1+ 35

or

ée _

* —Ea. \/[} +(%§Zﬂ Einheﬂz .+ | I;s.inée]

where the symbols ¢, 8, end. 'y are defined ih réference 7.

The cascade solidity need bs taken into account only when the
airfoll sketch to he used with figure 2 1s constriicted: For ths
subsequent celculations, any convenient &airfoll.chord may be used,
trovided only. that the sams chord is used for the external airfoils
end for the central airfoil. The resgom 18 as follows: The '
strengths of the singular*ties used to represent the external
airfolls are proportional to the asgumed airfoil chord; hence the-
additional potentisls induced on the central airfoil will be
proportional to the assumed chord. Since both the additional
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- potential ®, eni the distance s efong the contour %e Pro-
portional to the chord, ths alditiofial velocTty v, = Ega— will
be independent of the chord. :

The chord may then conveniently be chosen as that correspondirg
to a value & =1 since & would thennot appear in equations (10)
and (12). :

The net velocity at a.point on the airfoil surface is the
algebraic sum of ths volocity on the isolated a.ir.ﬁ‘oil and the
induced velocity v, at that point.

Selection of vortices for sovrce-vortex method.- For cascades
of about unit solidlty, the vortex distribution for an airfoll of
conventional design may be represented by five vortices spaced on
the msan line at 0.1, 0.3, 0.%, 0.7, and 0.9 of the chord. The
strengths of the vortmes £ra ée'beminod by the known chordwise
distribution of potential @p on the pper and lower surfaces for

the given approximation. The difference in potential between the
uppsr and lower surfaces at 0.2 chord is thus anproximately the
total vorticity between the leading edge and 0.2 chord and is
consldsred to be concentrated in the vortex at 0.1 chord; similarly,
the increase in this potential differencs betwesn 0.2 chord and

0.k chord yields the strength of the vortex at 0.3 chord and. B8O on,

The total vortex strength must satisfy the equation -V = -g-.

Selection of sources and sirks for source-vortex msthod.- The
selection of sources and sinks to represent the thickness distridbu-
tion of alrfoils is lsss readily systematized than is th= selsction
of vortices to repressnt the 1ift distribution. For conventional
airfoils, e reasonably satisfactcry representation is gsherally
atteinable with a source at about 0.025 chord, & second source
nidway between the nose and the position of maxwmm thickness, and
sinks at 0.5, 0.7, and 0.9 of the choird. Tha strength of each
source or sink is taken as the di"ference betwsen the "internal flow"
at e station midwey beotween it ard the preceding source, and the
internal flow at a station midwey betwean it and the following
source. This internal flow at a given station is estimated to be
the product of the thickness and the averags of the uppsr and lower
surface velocities &t that station.
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Obviously, not all airfoil shapes will be best treated
according to the pattern just described; however, litile ingenulty
is required to adjust the treatment to & part;cular shepe. In eny
case, the total source strength must equal the total sink strength.

PROCEDURE

A suggested step-by-step procedure is as follows:

(1) Obtailn the velocitles on the airfoil at the given angle
of attack in & uniform stream by the method of reference.T. This
step also determines a conformal correspondence between points
(x, y) on the alrfoil and angles @ on a circle, and hence the
potential distribution $p by eguation (10).

(2) Using the procedure described in the section entitled
"Computational Methods" choose sources, sinks, and vortices to
represent the airfoil.

(3) Choose points around the airfoil at which the distur-
bance function Wy 1s to be found; these points are conveniently

chossn, by reference to the conformel trensformation, to correspond
to 12 equal intervals about the circle. By use of Iigure 2,
doteimine =t these points the contributions to Qa and.-yd of

each source and vortex row. Sum seperately the values due to
sources and vorbtices at sach point.

(4} Form the compenmsating functions ¥, = ¥y both for

vortices and sources and determine the conjugate functions by the

method of reference 13. Plot Qc against @ and.measure'QyR

slope at the tralling-edge point. The relation T’y = -2x d—-ﬁ}
P

determines the circulation changes Fa and Igv dus to the

source and vortex rows. Obtaln P by means of equation (1).
(5) At each point

(a) Sum the velues of Qav and ch dus to the
vortox rows and multiply by the ratlo .=,

(b) Sum the values of @ds and Qp, due to the rows
of sources and sinks.

(¢) Fina op = o .l“f)é‘gE ,
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(6) Sum the terms (a), (), end (c) of step (5) to get 8,
plot éa against the civcls angle @, and msasure the slopes at
the points used in the original conformal transformation (step (1))

at which points the stretching factor -g‘:z- will bes known. The

additional velocity is given by equation (11); the net velocity on
the airfoil surface is the sum. of the additional velocity and the
velocity on the isolated sirfoil. The corresponding total
potential is Qn =@, + 8y *Qn +Qp, where Q. is known from

step (7).

Using this new potential and velocity distribution, repeat
the procedure, sterting firom step (2). The only modificstion is
that I'p  (step(4)) is now obtained from equetion (2), and in

step (5a) the correction factor is PTE/PTJ_‘ The process is

continued until the changes in 1ift and velocity distribution
become small. For practical purposes , the results cbtained in this
manner may be entirely satisfactory. More accurate results may be
obtained, however, by application of the contour-integral method
a8 described in the following three gteps.

(7) TLocatoe th: points on the airfoil that corrvespond, by the
conformel trensformetion, to points midway between thoee already
located in step (3). Place the airfoil drawing on figure 2 with
the origin, in turn, at each of the 12 points at which values. are .
Imown fram step (6) (considersd as z-points), and read the chart
at each of the 24 points (considsred as z!-paints). As previously
noted, some of these points may be neglected. For each of the 2k
(or fewer) poirits plot the 12 velues of § read at that point
againat the 12 corrssponding values of <I)T. By plenimetry £ind

the area between the fdired curve and the ,Q)T-axis to dstermine a
The value of q;d is determined eimilarly from a plot of the 12

valuca of v against the corfesponding values of O
() Form the function’ qrcz-ﬂ;}d, dstermine its conjugate 'Qo;
’ a¢
the circulation change is T, = «21\:( -——9) and -the potential

) \ @
Q‘P:Paﬁ.

(9) sSum the terms 2., 23, and @p  to get @a, plot ageinst
the circle angle ¢, and measure the slopes. The velocities on
the airfoil surface in cascade ars obtainsd as dsscribed in step (6).

A



22 | NACA TN No. 1252

Unless this velocity distribution differs widely from that dbtained
in the preceding avproximation, it should not be necessary to
repeat the procedure.

The velocity distribution at another angle of attack may be
obtained as follows:

(a) Solve equations (5) end (6) for 6,, 64, and K. A
method of molution is indlcated in the discussion following
equation (65). The angle of zero lift end slope of the lift, curve
mey then be obitained from equations (7) and (8).

(b) Obtein the potential distribution P as a function
of 6 (egquation (4)); compare with the kmown &p to get a

correspondence betwsen 6 and position on the airfoll. Equation (9)
then ylelds the wvelocity distribublon at stream angls xo'.

ILLUSTRATIVE EXAMPLES

Example 1.- The velocity distribution was obtained on the

NACA bh12 airfoil in the configuration shown in figure Lk, where
B=0° o0=1.032, and 2 = 9. T7°. This exemple has been

treated in reference 8. In accordance with the foregoing procedurs,
results ag follows were obtained:

(1) In figure 5 is shown the chordwise velocity distributions
of the isolated airfoll at the angle of attack of 9.7° , 88 obtained
in & second approximation by the method of reference T._ The 1Ift

coefficient at this angle of attack is 1.67 (that is, -c—% = 0.837),

the angle of zero Llift of the airfoil is ~h 2h° and the slops of
the 1if't curve is 6.95 per radian.

(2) By use of the procedure suggested in the section entitled
"Computational Methods, five vortices, two sources, and thres sinke
were chosen to represent the airfoil initially (fig. 6 and tuble I).

"(3) With the first location at the trailing edgs, 12 locations
on the airfoil wers found corresponding to 30° intervals of the
circle angle ©. These locations are shown in figure 6. (The
primed points correspond to 15° intervals.) Readings teken at
these points from figure 2 are given in table II. These readings,
multiplied by the appropriate source and vortex strengths, ylelded
the values of @3 and Wa due to sources and vortices given in

table III.
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() The conjugate functions @, were determined by the 12-
point method and are given in *table IV. The slopes of these
functions at the trailing-edge point yielded circulation changes

r r
= 0.006 and -—Y¥ = -0.538, from which (equation (1))

Ls |
cVy
coefficlent in caescade (c; = 1.03).

0.913. This value corresponds to & first approximate 1lift

(5) In teble IV are given the valuecs of @, end &g, due to

I
vortex rows multiplied by the ratio —% (equation (1)), the valuss
T

of ch and @ds dus to source rows ,fand. the function

¢P=_¢T ‘Pf)§i°

(6) The additional potential &, =@y + & +&n is plotted

In figure 7. Sloves of this function wers moasured et points at
which the stretching factor is known from step (1L). The additionsl
velocity vy was then camputed by eguation (10); the algebraic
sum of v

s and the velocity in isolated flow yielded the cascade

velocity (fig. 5). This velocity distribution, togother with the
total potential &g, formed the basis for a second a;plproximation

(figs. 5 and 7). Results of this approximation are :5%3—= 0.006,
0

r
-0—31 = -0.365, and ¢y = 0.99. Ccmparison of the velocity

0 .
distribution with that of the first aspproximation shows that the
process has satisfactorily convergei.

(7) The seame 12 points around the alrfoil wers chosen as
z-points; these, togother with four others at 15° intervals around
the nose (primed points in fig. 6) were used as z!-points.

Readings from the chert (fig. 2) are given in table V. These values
were plotted against total potential @gp {arbitrartly fixed at 0
on the lower surface at the trailing edge). (A sample curve is shown
in fig. 8,) These curves were integrated by planimetry., The
results - the disturbance potentials and stream functions & a

and {3 - are given in table VI.
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(8) The function @c (teble VI) was obtained by 24-point

harmonic anelysis and synthesis, with the use of interpolated
values of ¥, for the points at which it was not found explicitly.

The slope of the curve at the trailing—sdge polint ylelded
T

_%_ =.-0.34k, from which a 1ift coefficient ¢, = 0.99 was
cVp :

obtained.

(9) The additional potential &, = @3 + P, + QI’ is plotted

in figure 7. The velocity distribution was obtained as befors and
is plotted in figure 5. The process appears to have essentially

converged., . _. - . . - . o ’ -

Simultancous solution of eqnatiogg¢(5) and (6) (tabls VII) to .

£1 i - 0.
nd the valus of K at which STy = gave X = 0.30833,

8y = =7.57°, eand 6 = 181.72°. Equations (7) end (8) then
yielded the ahgle of zero 1lift % = -5, 750 and the slope of the

de .
1ift curve a&%_= 3.71. Thesse values may be ccmpared with
0 dac
n = -5.94° and aaé = 3.71 from refersnce 8.

In figure 9 is shown a plot of the potential @g against &

camputed by equation (4). A constant hes been added to meke the
potential equal to zero on the lower surface at the tralling edgs.
The Imown total potentiel in cascade @T..and the corresponding

values of x/c .are given in table VIII. Values of 8, picked off
the plot at pointe where Qg is equal to the given values of 2,

are shown in the adjacent columm. The corraspondence between
alrfoll position and the angle 6 is thus determined, ¥or the
flow angles Ag' = 1.81° and Ay = -5.94C, the velocity

distributions were computsd by equation (9). Im figure 10 these
results are compared with the distributlione given in referencs 8.
The main results of the calculations srs summarizesd in teble IX.

Exsmple IT.- In an effort to obtain In the simplest possible
menner & reforence solution &t largoe blade angle concerning the
accuracy of which there could be little dcubt a lattice was
derived by a modified Joukowski transformation. This trens-
formation is discussed in detail in the appendix. The cascade
configuration is shown in figure 11 whers P = 459, ¢ = 1,006,
and Mg = 49°. This lattice will be referred to as the "derived

ajrfoil lattice.
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The procedure followed for the sowrce-vortex method was similer
to that of the first example: the calculatione are outlin=d in
figures 2 to 14, Because of wuhe unueuwal shapo of this profile,
only on3 source was used and an additional sink was inserted at 0.3
chord (fig. 12). From & lift coefficient cy = 6.8% in isoleted

flow, a single approximeatlion yielded a 1lift ccefficient Cq = 0.54

in cascads, vhich was the sems ag that derived Irem the soluiion by
conformal trensformation, Since the camputed changes in vorvex
distribution were emall, no further approximations wers made by
this msthod. By reference to the velocliity distribution of this
approximstion (fig. 13), the process may be scen to have esscntislly
converged to the correct solution.

The final contour integration resulted in a 1ift coefficient
¢y = 0.5% and the velocity distribution shown in figure 13. The
main resulbs of the celculations are summarized In table X.

Langley Memorlsl Asronautical Ieboratory
Kational Advisory Comuittee for Aercnautics
Langley Field, Va., January 1C, 1947
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APPENDIX
DERTVED ATRFOIL LATTICE

The symbols used in the appendix are defined in figure 15
and should not be confused with similar symbols used in the main
text of the paper.

Consider the trensformation (reference lO),

'~ K _ X
2 = e‘lﬂ‘(e N 1083? o og é"“t:zc) (a2)

The wnit circle ({-plane) becames a lattice of horizontal
straight lines in the z-plane, spaced at unit Intervals along the

stagger lihe, making an angle %-- B with the axis of reals. The
solidity of thie lattice is

: 2 2 -
o =% (;os 8 1086'/%inh Ki;hc§§ B + cos B
8

"+

+ gin B tem

L gin B
Véinth + cosEB
This relation is plotted in figure 3.

A closed curve enclosing the points { = "_'e_'JK but not
enclosing the points { = *eK will transform by equation (Al) into
an infinite latiice of closed shapes in the z-plane, spaced in the same
menner as the straight-line lattice. Such a curve 18 the circle

£ - o
Votig 1
=08 + re
_ in
3.75

l.O'?ei¢ + 0,098
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This circle, where f = 45° end K = 0.331, becomes the lattice of
profiles that has been rsesferred to as the derived sirfolill lattice.
A flow for which this circle is a streamline and which, in the
z-plans, has no singularities outelde the profiles, is that due to’
the system of sources, sinks, and vortices -shown in figure 15. The
vsloclity on the circle boundary due to this system is

{/g—‘\ = £ 008 Ay + B sin hg + G-
. 0/¢ o
whers -
Al
hoo Ol _smn(¢-8) _ _sin(d - 50)
E - cos(f - 5;) H, - cos(F - 85)
A ' 7
B=e “r{o J:L - JE I
H, - cps((j - 51) H, - cos(g - ‘52)_
- J _ . J 7]
¢ = Yo 1 . da
£, cos(§ - 8,)  Hy - cos(d - 85)
and
51=+,an'l r sln & _ 52.=ta.n"l -r gin &
eX -~ v cos & ek + r cos B
H=231n+L d = g‘ -
e 3) &

) e ] -'[ S - -
e ‘TO\/rE + eEK - EraK cos & m, = e Vo\//r? + 95{ + EreK cog &

!

The constant I' which is the circulation about each profile
(positive clock:wise), is determined by the trailing-edge condition as

T A B . »
V—_O-—= -2(6- cos Ag + o gin )“0) (a2)
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where A, B, and C ars evaluated at the angle ¢ which -
corresponds to the trailing edge of the profile. The angle of

zero 1ift 7n with respect to the sirfoil chord, is obtained

from equation (A2) by setting I' = 0; thus,

-1
= = A _ g
The stretching factor from the circle to the lattice is
L. ¥ /3
ldz 2V E

where
2]

D= licosh 2K - cosh 2V cos 26)2 + (sinh 2 ein 26)

E = [h cosep cosheK(cosh%p - 00526)

+ L sin2t3 s:lnheK(coshQ\y - sinee) - gin 2B sin 26 sinh 3;.!,

and ¥ eand € are obtained from V,, ¢, r, and & as

e=tan-leosin¢+rsin5

)
"0

cos § + r cos &

oV = » cos(6 - 8) + ‘/eapo - xF sin2(6 - 8)

The velocity at any point on the surface of a profils is

(%), (%)%



NACA TN No. 1252

p

10.

11.

REFERENCES

- Betz, Albert: Diagrams for Calculation of Airfoil Lsttices.

NACA T™ No. 1022, 19k2.

. Pietolesi, E.: On the Calculation of Flow past an Infinite

Screen of Thin Airfoils. NACA T No. 963, 19k1.

. Pistolesi, E., and Toniolo, A.: Sul calcolo pratico delle

schiere alari. L'Aerotecnica, vol. 18, fase. 10,
Oct. 1938, pp. 1065-100L.

. Collar, A. R.: The Flow of a Perfect Fluld through Cascades

of Aerofails. Jour. R.A.S., vol. XLV, no. 365, Msy 1941,
pp. 183-213.

Merchant, W., snd Collar, A. R.: Flow of an Ideal Fluld past
a Cascads of Blades (Part II). R.& M. No. 1893,
British A.R.C., 1941.

. Howell, A. R.: HNote on the Theory of Arbiltrary Aerofolle in

Cascade . Note No. E.3859, British R.A.E., March 1941.

Theodorsen, T., and Gerrick, I. E.: General Potential Theory
of Arbitrary Wing Sections. NACA Rep. No. 452, 1933.

- Garrick, I. E.: On the Plane Potential Flow past a

Lattice of Arbiltrary Airfoils. NACA ARR No. MAOT, 19hk.

Mutterperl', William: A Solution of the Direct and Inverse
Potential Problems for Arbitrary Cascades of Airfoils.
NACA ARR No. LhR22b, 194k,

von Kdrmen, Th., and Burgers, J. M.: General Aerodynemic
Theory - Perfect Flulds. Apnlication of the Theory of
Conformal Transformeation to the Investigation of the Flow
around Airfoil Profiles. Vol. IT of Aerodynemic Theory,
div. E, ch. II, pt. By W. F. Durand, ed., Julivse Springer
(Berlin)_. 1935, PPO 91"96.

Weinig, F.: Die Stramung un dle Schaufeln von Turbomaschinsn.
Johann Ambrosius Barth (Leipzig), 1935.

- von Mises, Richard: The Theory of Flight. McGraw-Hill Book

Co., Inc., 1945, p. 198.

29



30 ' ¥ACA TV No. 1252 .

13. Neimen, Irven: Numerical Evaluation by Harmonic Analysis of
" the e¢-Function of the Thsodorsen Arbitrary-Airfoil
Potential Theory. NACA ARR No. L5H18, 1945.

14. Theodorsen, Theodore: Airfoil-Contour Modifications Based :
on €-Curve Method of Calculating Pressure Distribuvtion.
NACA ARR No. LhG05, 194h.



TABLE T

STRENGTHS OF SOURCES AND VORTICES CHOSEN TO REPRESENT

THE NACA 4412 ATRFOIL LATTICE

-z -
oV, cv
0. Source 0
Vortex location | First approxi- | Second approxi- | location | First approxi- | Sscomd approxli-
(fig. 6) mation mation (t1g. 6) mation mation
5 .18 .098 ¥ Olih Olth
¢ 128 062 € - 043 - 041
: .097 LOh2 ‘ - -01‘-5 - 0010-7
! 052 023 n =053 =057

NATIQNAL ADVISCRY
COMMITTEE FOR AERCNAUTICS
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TABLE IT

CHART RBADINGS FCR NACA 4412 ATRFOINL LATTICE, SOURCE-
VORTEX METHOD

® for vortex row of wnit

|

¥ for vortex rov of unit

strength strength
AR _\i'\ it “n' ?’1 naf 7] o NS IR UL R R
- v:-r . -ogj-ﬂi'é -ans.s - : A I *-r.ff& -:Ef;'—a:‘s'a
il
8 0.002|0.008 |0 .008 J0.011.|0.810|0.004 0.001 |-o.21.1. =0.18% |-0.176] ~0.120 | -0 .0T0 |~0.025 |~0..003
b O02| .008] .0081 .011{ .010| .003|0 ﬂ-.lee -.158| =.1%0} ~. -0h7| -.013} 0
e ookl 008! .08} 009l 00s)-.001) ~.002 | -.1351 -.092] -.083] -.ouu] -.on1] 0 - 4010
a 005| «006f 006 .00% |-« = 007] - .007T -.oh5 030] -.026] -. 9 -.019} -.
° 02| .o02| .o02)-.00n]-.012)-.003| ~.013]] -.007] -.001] 0. | =.002] -.0es| -.0%0] -.a2s
£ o - .001 |~ .002 |- .008 |- .015| - .013 ~oul o -.001} - -019| -.057| -.115} -amh
) 0 0 -.003 |- 005 | - .002| 0 "o -.003] -.002| -.024| ~.063] -.120} -.183
h -.oc2|o 0| o2 .008] 000 .026] 0 001 0 -.012| -.0h4| -.000) -.156
1 - 012§ -.007]-. .0o1| .008] .01% .ozaﬂ'-.om - -.00k] .001]| -.013| -. - 08
3 - 020§ = «015) - .01k |- <006 |0 010 016 =058 -.082] -.03T} -+010| 001 -.010| =.042
k- - 016]-.011}-.010 |- .00%} .002|0C 008 -.125] -.102] -.0%] -.050| -.028] O - 006
1 -0osfo o | .003] .004| .001lo -a6s| -a61] -.a33] =097 -.0u8| -.015| 0

NATTONAL ADVISORY

(44

2621 "ON NI VOVN
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TABLE IIT

2 CONTRIBUTIONS OF INDIVIDUAL SOURCE AND VORTEX ROWS TO THE
DISTURBANCE FLOW FUINCTICN ON THE NACA 4412 ATRFOIL IN
‘ffr-:.”;';_b, CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METEOD

< et
S T M
] 5|8 8 € t 1 o y € | ¢t 1
A Lt .
. Reading @, due to vortex rows ®; due to source rows
&t -
(fig. 6)=
.
a 0.0030| 0.0020| 0.0013| 0.0004| O 0.0205/0.0077| =0 .0030] ~0.0011|=0.0001
b 0030] .0020f .0013| .0003| O O0LT6| 0066| =.0020] =, 0
T c «0030| .0016| .0006| -.0001} =-.0001 0112| .0036| -.0005| O = .0005
4 0023] 0007| =« - - 000k 004%| .0011} O ~.,0008] ~.0030
[} .0008 - 00007 =-.0015 | -, 0013} - ©O00T om [0} =-.0011] - 00018 - o
T - - l0015 - 00019 - -0013 - 0 L001) - -002’4 - 00052 =
-9 (o] = 000 --0006" = 0 (¢ <0001 '-0(27 '-005# - o
h 0 L0005| ..0006| .0010| .0008 | O o =-.0019| =.0040| =.0083
1 ~.0026] .0002| .0010| .001k{| .0012 001k[ 0002} =.0006] ~.0022] =-.0052
3 -.0057| -.0011{ O 0010| 0008 «0056] .0016] O -.0004| -.0022
X - -.,0009| .0003]0 0002 01211 o041} -.0008| 0° - .0003
1 0 0009 .0005| .0001L| O .0180{ .0067{ ~.0021| =.0007| O
P ¥y due to vortex rows Td. due to source rows
a ‘0-0698_ =0.0221 ‘000090 ‘0.00211- =0.0001 0.0002 0-00011» -0.00011» =0 .0002 [c]
b ~.0599] =.0x76{ ~. -.0013] 0 ° 0002| .0004] -.0004| -.0001| G
c -.0348} -.0081| -.001k4 | O - 0005 +000L{ .0004| -.0002{ @ 0001
- a - -O:L'Lll- =.000T7} O - .0018 - -0029 .0005 -0003 <0001 -0003 0004
e =.0005| =.0005| =.0032 | =.0039( =« «0002| .0001; .0005{ .0006| .0007
T -.0003| -.0035 -.0073| -.0111}|.~.009L | O 0001 .0006] .0006] .0006
g -.0010| -.004% | -.0081| -.0126} -.0096 | O 0 0002| .0001] @
h 0002 =.0021 °o0056 -.0087 “-O@l e 0 bl e -
' i -,0023] ~. -.0017 | -.0046| =.0051 | ~.0012[~-.0003]| ~.0003{ ~.0007| =.0012
~ J - 01057 - 00018 L0001 | -.0009] =-. - .00]9 -~ 00006 0 - -OOOH- =
Xk - 00386 - -OO% - -0022 [0} - .0003 - 10016 - .OOOII- =.0001] € -9
1 -.0610| -.0178| -.0061] -.0014 | O -.0005|0 - e e

. NATIONAL ADVISORY
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TARLE IV
TOTAL EFFECT OF SOURCE ERD VURTEX ROWS, AND CORRESPORDING TERIVED POTENTIALS
ARD VELOCITIES, CF ¥ACA LL12 ATRFOTL IN CASCADE; FIRST APFROXIMATION,
SOURCE-VORTEX METHOD :
s - N ,Values at points oo figure 6 ) Valuea et points where @ 1g known
/ 3 < 5 & i 7 7 A as
n
ot ¥a. (% | ®a | T | % | & [Catlahl 8 |3 (o P Y A .
cv'o dvo oV, ¢V | oVp c¥y eV Pr} o eVp Vg c¥p ¢ |V, M s | Vo Vo
- (a) | (=) {a)
qd, - - E - PN
_ Sources . - Vortices :(@1?).%‘5;: i i?r 91 1 Upper swrface
a 0.0000 |0.0014 0.0210 |-0.1034 |0 .0013 [o.0067 0.0049 ;-0.0270 0.0033]0,6056 .6059
00125 |-0.0356|7+153 {0,254 | 2.287 |-2.033
] B { .0001| .001%| .0R216| -. LOh1k | L0066 0295 | -.05h0|-.0015] 5355 | 530 500! -onorhy sk | - qon e aoe 1,80
¢ 0007 | ~0015] OL3B| -« £0513 | 0050 HOWT - «0810{-.,0310] .3592 | .3282(| .1000( -.0456(3.500 - 1.9%3 11.693
a 00161 0000l .o017l -.ER1 .03k 0017 0206 | -00800-.08081 .ol o580 <2000 | - 2 |2.733 =.1k8]1.729 | 1.572
' - : g B000 | ~.0606]2.218 | -.140 ] 1.523 | 1.383
e 0021 |- .0003{ ~.0097| ~.0L4&) .00LO |-.003k 000k | ~.1350]-.1836)-.0365 F.1B0L[{ «6000| -« 2,133 | ~.108 | 1.35% |1.237
r | .0019 |- .0020|-.0167| -.0313]~.0050 {-.0057 0065 | -.1620| - 1872}~ 1126 | ogg8|| <B0O0O| -+0226)2.058 | -.057 | 1178 [1.121
L L .m 'AOOTB 3.226 -.(25 lDOTB l-w3
g | 0003 |=.0030]|-.0L7TT| -.03&7| .003T |-.001% 000k | =.1B891]-.208L |- ,0459 [.2543
Lover surtade
1 |-.0016]-.0032|~.0142] -.0Rk3| .00U4]| .0029 HO0u8 | -.216]1-.2290] L1642 [,
0.012% [-0.085118 .263.[-0.372 | 0.458 | 0.086
1 -.mﬂ -.QO:]@ '-m& -!0139 '-m -Oqla --ma "-2"'-31 '-85% 'hm &36 .wm __%51 h‘_&)3 _.m _.au “aﬁlll-
. -.08h7{3.30h | -. =541 | -.001
3 |-.0037| 0007 .0086| -.0205|-.0356 |-.0030 ~0236 | -.2701]-.2884| 8365 | sms1|| +2000 -
. . K 2000 | ~.1027|2.413 | -.248 | =676 | -.924
k |-.0023| .0022| .015L| ~.0503|-.0%0% |~.00h6 =-.0338 ~2971| -.3136|1.1558 | 8h22|| ,uoo0 ~157 110 | 221 | -u75h |- 975
1 |-.0007| -0c22| .o219| -.0863|-.0372| 0015 -0218 | -.3281|-.3218(1.3726 fL.onge |} +6000| -.2008{1.503 | -.192 | =756 |~-
. ) Al 8000] ~.0621.12.335 | ~.145 ] -.83% | -.979
e | «0000| .0014| «0240] ~.103] .0013] .0067 O0RSP | -.35114-.3200|1.4451 L2431} .9000| -.0328(3.080 | -.101 | -.BL5 [-.946
a .
Talamdtdaoo alames dha seePonse see ssmctdecmed cond bfore wbhos Zlmoodad focee dhoe Y acvene smelone sk dle dendTdo - ol oe Sasce-ad
§ A AT G LD DALL 1:] @ GBS AUWILDU PUDL bl D WHDL R LWL LLWAR WUO LU DULL 0 Sy Lo IA}.“.I.-I.J.M“ o =] L] S
the uppar surface at the trailing edge. I * oo
,-‘:" A SERNR A NARTONAY, ADVISORY
FIF 1 "r:: te - sl COMMITTEE FUR AERGNADTICS
s
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NACA TN No. 1252 35
TABLE V
CHART READINGS FOR INTEGRATI(N WITH RESPECT TO
®p; KACA 4412 ATRFOIL IN CASCADE;
CONTOUR-INTEGRAL METEOD
N a v| d ° £ g h 1 3 x 1
a .

So> b;’;g}; 0.5%00{0.3106 | 0.0401 [~0.2022 [-D.3280] -0.2911 [-0.106% | 0.1783! 0.k586 0.7954 | 1.0060

]
a 0 o} FO 001 |=0.00%0 }~0.0095|-0.008 | 0.00% | 0.020 | 0.029 { 0.0215 0.008 | 0.001
b 0 0 0 -.003 | -.0085} -.006 005 0812 | 02751 020 | 0065%0
c ~+000% | O (o] ~.0015| ~.006 | -.005 006 0195 | 0215 0105 -.0005 | =-.003
a -.0045 | ~.003 | -.0015] O ~.0015] ~.00L 0065] 05| 010 | ~.0035 -.0125 | -.009
e =010 [ =.008 |~ -.0015{ 0 «0005] 00k 0055 | +.006 | =.0205{ =.023 | -.016
o' 01l |=.010 | =007 | =002 | O o] 0025 0 =012 | =025 | =026 | ~-.018
£ =009 |- =005 | -.001L «0005{ © «0005 | =.0025 | =.01% { =.026 | -. -0k
! ~-.002 |=.00L(0 002 002 | o 0 ~.0035 | ~.01% | ~o02k | ~.0215 | -.010
g 007 007 | 0065] .0085{ .0045] 0 0 =002 | =.010 | =.018 | -.015 | =-.002
g! 015 015 ] 012 011 0055 0 0 =.0005 | =.0065] =.0125{ ~.008 006
n 2k 022 | .019 0O1h5} .0050] -.0035{ =.003 | © =.0025{ ~.006 | 0005 .015
h' 028 02T 1 .022 01k 001 | =008 | -.0065] .001 | -.0005}-.001% .0055] .0195
1 0295 | L0285 022 «0095) =.@06 | ~.0155{ -.0115] .003 !0 «0005{ 008 0215
J . 022 «020 | L0105! J0050{ =.0205] =.02T7 | -.0185| .006 0O (+] 0035 | 016
k «008 «0065] =.0015} «.012 | =023 | -.025 | ~.004 | -.0005| .008 | .0035/0 00k
1 001 |0 =.003 | =.0085! =.015 | ~.017 | -.00L | -.015 021 | 0155 .00% jO

¥
a o] 0,002 F0.024 |-0.083 |=0.1%% {~0.205 |-0.217 |-0.186 {-0.130 -0.066 |0.018 [-0.002
b -.002 |0 «012 | =063 | =132 | =178 | =187 ]| 24159 | =o102 | =005 | =40075 | O
c -.023 | =012 {0 0205 =40T3 | =ol11l | =120 | =095 | = -.008% .00L } -.0125
a -.081 | -, -.0205] 0 =018 | -.042 | =088 | -.030 | =-.00k | 0025 -.023 | =,
e ~53 | =128 1 -.070 | -.0175] © =006 | -.0075] © O02 | =e023 | =077 | -4131
o' -~ 184 | «.157 1 -.091 | =031 | =.003 | -.0005] -.0015] .002 | -.0035 -.040 | ~-.100 [ -.159
r ~20% | «.180 | -.109 | ~.082 | =007 | © 0 0015 | =011 | o053 | =219 | ~.281
! -2l | =189 ~.119 | -.088 | -.0085] O 0 =001 | =017 | =.06% [~.129 | -.191
g -212 | -, 186 ~.116 | ~.047 | -.008 | © 0 «.0015 | =.017% ~.063 | -.128 | -.189
gl | =205 | «.176] -.110 | -.0k15} -.005 0015| o =001 | =.01k*] -.056 | -.120 |} ~.281
h -JA84 | 1581 -.093 | =030 | 07 0015| -.0015] © - Okl | -.103 } -.160
h! =158 | =.133} =073 | =.017 W0035] =002 | =006 | ~.002 | ~.003 | -.0295] -« -.136
1 127 | -.101 | -.088 | -.0035} .0025] -.011 | ~.01T | -.0085] O =015 | ~.058 | ~.105
J ~.062 | ~.0kk | -.008 003 | -.0225] ~058 | -.063 | -.08% | -.0155 0 . -.016 | -.04T
X -.018 | -.0079 001 | -.012 | «.081 | ~a223 | ~a130 | -.203 | -.059 ] -.016 {0 -.0085
1 -.002 =013 | =009 | =131 | =079 | -.188 | ~.16% | -.108 | ~.OBTS -.009 { O

SUpver surface at trailing edgs.

e

blower surface at trailing edge.

RATIOHAL ADVISORY
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NACA TN No. 1252

TABIE VI N

DEEIVED POTERTIALS AND VELOCITIES ON NACA Lhkl2 AIRFOIL IN CASCADE;

CONTOUR-INTEGRAL METHOD
Values at points om figure 6 Values where % is known
ol 3 (B %% | %) % (% Pr)l x|1 Paotp Ta [Y | T
v, oV, oV, c¥, oV, ¥y oV, S oV, dp ] ds Y Yo Y .
(a) (e} | (=)
« [0,0261|-0.0687]0.0021 |-0.01% 0.0158} 0,577} 05875 Upper surface

0259 -.08TL] 027 -.0%320 .0098f .5302] .5400{D.0125 |-0.0403{7.153 |-0.288] 2,287

.0500 [ -.0896{4.541 | -,225(2.002
0164 | -.0314| 0382} -.0720| -.017h] 3280} 30§\ "~ | 'St St Tl e

1
1
1
.0033] -.0098} .0257| -.1008 -.0718; .1119 .ouor|} .2000| -.0667}2.733| -.182|1.729{1

4000 | -.0650(2.218 | -.1kk]{1.%231.
-.0129| -.0049{ .0090} -.129§ -.1335| -.0687| -.2022 6000 | -.0452{2.133 | -.096|1. 35| 1
e*{-.0184| -.0071] .0017{ -.1hho| -.1607]-.1237} -.28uk)| .8000 | -.0189/2.458 | -.04T|1.178i1
.9000 | -.00k2|3.226 | -.01k|1.078{1
-.0219| -.011k{-.0012] -,1584 -.1815] -.1465] -.328)

£11-,0210; -.0130|-.0031 ) -.1728 -.1969}-.1329]-.3298

Lowver surface

P.0125 {-0.0598]8.263 |-0.k9%[0.458({~0,036
--0186| -.0164 |-.0035 | -.1872f -.2093/~.0818 -.2912|[" eng | _ o700k, 603 | -.36%|-.304] -. 678

g'}-.0257| -.0151|-.0015 | -.2017] ~.2189] .0060|-.2126}| -1000 | ~.0938]3.30% | -.310|-.5%1] -.851 .
2000} -.1078]2.413 | -.260|-.676} -.936

L4000} -.1199(1.91% | -.230{-.T5k| -.98%
ht |-.0096 | -.0118{-.0066 | -.2305| -.2467| .2747| .0280|| 6000 | -.1073|1.903 | -.203|-.796] -.999 .

L8000 | ~.056412.335 | -.132|-.834] «.966

-.0071| -.0092(-.0122 | -.24kg} -. 2642} .bk25| 1783} ,9000 | -.0333{3.080 | -.103]-.845] -. k8
.0002 | ~,0187 [-.0261{ -.273T] -.2996] .T982] .4986
0115} -,0362(-.0323 | -.3025]| -.3233]/1.1187] .95k
0232 -,0586(-,022% | -,3313} -.3305{1.3365 |1.0060

,0281 | -,0687| .0021 |- -.3601] -.3299[1.4117}1.0818

-.0128} -,0128;-.00h3| -.2161| -.2332] ,1268}..,1064

a .

Velocities along the surface ars consldered positive vhen directed from the
trailing edge to the lemding edge on the lower surface, and from the
leading edge to the trailing edge on the upper swxface. O,

NATIQNAL ADVISORY
COMMITTEE FOR AFR(NAUTICS
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TABLE VII

COMPUTATION OF MAPPING FUNCTION CONSTANTS

FOR NACA L4412 AIRFOIL LATTICE

K o 0y s T U A%y
(deg) (deg) Yo
0.3 -7.37 | 181.62 | 1.1307 |0.0157| 0.2879 | 1.h343
0.4 -9.81 | 182.38 | .9585 | .0152| .2895 |1.2632

0.32 -7.85 181.83 | 1.0920 | .0156} .2886 | 1.3962
0.311 | -7.63 181.73 | 1.1088 | .0157| .2882 | 1.h127
0.308 | ~7.57 181.72 | 1.1147 | 0157 .2882 | 1.4186
0.309 | -7.59 181.73 | 1.1128 | .0157| .2882 | 1.4167

A
0.3083 | -7.57 181.72 | 1.114% | .0157( .2882 1.1;1836 a})
o)

cos xol Rcosh K - cos 64)(cosh K + cos 6,)
2xo 8"Lcosh K + cos 6;)(cosh K - cos 6y)

Tn

sin Ag tan-;{:(sm 6n - 8in 64)sinh K
no

sinh®K + sin 6 sin 6y |

U= _ L  ten-1 (ten 6 - tan 6y)tanh X
eV, tant®K + tem 6p tam 6y |

NATIGNAL ADVISORY
COMMITTEE FOR AERCRAUTICS



TABLE VIII

RELATICN BETWEEN CIRCLE ANGLE ¢ ({-PL&NE) miD

LOCATION OR WACA 4412 ATRFOIL IN CASCATR

Uppsr suxrface Lower swxTace
Point 'T/cvo x/c ( dgg) Point QT/cVO x/o (dgg)
g |=0.2911 |0.006 14| a [0.5875 | 1.000]| -178.3
h | -.064 [ 090 | 17.0! b | 5400} .920 |-167.3
1 JA783 1 270 | B5.T| e 306 707 | ~135.8
3 4986 | 501 ) 98.6] a | .okoL| J435) -B2.9
k 7954 | otho | 1452 e [-.2022| J8T] -35.1
1 | 1.0060] 927 | 18.2] ¢ |-.328]| .033] -11.8

88
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TABLE IX =
CONITANTS OF WACA 4412 ATRFOIL LATTICE E
b
Source -vortex method o
| e
Contour- Msthod ’.’;{ ho
in n
First Secend tegral method reference 8 =
approximation approximation '
APB/GVQ 0.006 0.006 |  ~e--- m——e— === | mmemmmceeeas
Ty/c¥, -.538 --365 | e mremmmmsa—-
AT, /c¥, -.32k ~. 342 0.6 | e
c, 1.03 .99 .99 1.00
K ------------ A R an e  m am e aa -3083 13109
8, , deg SANPRRRSORSUS U [ 181.73 181.79
de, /% --------------- ,emmmm——aaa 3.TL 3.7T1
n, deg e e B ————— =5.T5 -5.9h

NATTONAT, ADVISORY
COMMITTEE FOR AERORAUTICS
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method; £irst Contour- Confoxmal
approximation integral method transformation
AI'S Vo 0,083 | ecosmcccmmmreas | ceccceccmeee--
AL fev, S0 T IS (NSRRI (O S
AL /eVo -.148 0,152 = |  esmeccecme———
ey .Sk Sk 0.54
. [ 2637 .2635
Og,d08 | eememmmmmemea 193.50 193.46
L N R 5.11 5.11
Ndsg |  ~eeemccaeee-. -2.03 -2.11

B3G¢T "ON NI VOVN




Fplane iy L

$-plane \ -7= — ~
—— _ Lr /
. ! "

Strength % & )

%d Cos /\0 ' /-;*
\id sin Ao :
,’1

/./__I /— /2 \ I

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure | .- Flow singularities tn circle plane ond corresponding veloeity vectors
tn physical plane. '
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Fig. 4 NACA TN No, 1252
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Figure 4.- NACA <44/2 d/rfb// mn  /attice
arran_qemem‘- /9==0 0=/032; A, = 97°



op]

. 1
n '

-

P

L
\ ~-== [solated ' flow; ¢ = 1.67
Ele— _ : ——Matfrod of reference 8;c¢; =100
o +  Source-vortex method,
N ~ first apprOX/maL‘/on, G =103
T ~d. B Sourcevortex method;
\3\ Trre-o) second . apprommm?/or;c =099
i ~~|_ O Contourntegral melhod; |
™ Jo- first  approximation, G=p.39

3

p
\1

—

- 3 - o — ]
/ . ..__.-.-..___,..,__— o o= e =1

P Ly

-

i ; -~ =
1 ’
] /
iy
g NATIONAL ADVISORY
\ o ' COMMITTEE FOR AENOMAUTICS
i
!
v .
ony :
(4] 4 2 3 4 & (2] 7 8 ) /0
x/c
o r — la_ S AsA/MA - 1 _J a7 P
I'/gUf'E\J - VBIGC‘I&IES Or? IvAGLA I "'7 OII ir Ib()l & 710w e mrr

fattice * arrangement . (3-0° o= 032 ; o=8. 7°.

%8217 'ON N.L VOVN

G *Brd




<
~
>

c

Figure 6 .~ NACA 44/2 oirfoil, showing chosen tocations

and vortices along mean fine ,
chart readings were faken

NATIONAL ADVISORY

COMMITTEE FOR AERDNAUTICS

and Jocations

o
vt

af

Sources -
which
)
l'JXJ_}\ nlsS ¢ 7
’ e
2. x fod? -2 Fiog ===
+
» L
# . *,

7ggT "ON NI VOVN

g "31a




40
/f—*_h
32 T
// L~
: |~
/:{’:f P -~
- ' P s e
12 4 o /
% o
c =
P
6
/
/|
//
- /] — — Source-vortex method;
08 // first appro¥itmation
/ ————— Source-yortex /method;
- second approximation
wd Contour-1ntegral method
O 4 d |
0 40 80 120 /60 200 240 280 320 JE0
Circle angle, @, deg NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Figure 7 .— The induced fiow function 84 agamnst arcle ,angle for NACA

4412 airfo/ in lattice arrangement. 3= 0; ¢ =/032;
Ky~ a.7".

3581 "ON NI VOVN

L 31T




-2 A, AN

\ \

N

20 LN
\

=10 o8 -6 —4 =2 0 2 4 b
[ NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 8.— Typical curves for determination of &1 and ¥y by contour-integral
method. These curves are for point g on NACA 4412 awrfoll in
lattice arrangement. A=0°; r=1.032 ; o, = 9.7°
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Figure & .— Velocity  potentiol

airfo)) in

lattice

Circle angle ,- 8 ,deg

arrange ment,
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NACA TN No. 1252 Fig. 11
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Figure |/ .—Derived oirfor/  Jattice . /2 = 45°;
Jz/.OOé,' AO: 49,
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- Figure (2.~ Derived airfoil showing chosen locations of sources and vortices
along mean line and locations at which chart readings were taken.
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20 ——71z0/ated Flow, ¢; =0.8¢# l
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Figure 15 .- Flow singularities {n S-plane

Strength
[z
KSin Ao
W cos A,

——

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

for derived alrfoil lattice,

2621 ‘ON NI VOVN

g1 ‘814



